The Use of Color in The Colour Out of Space, Part 1

For the sake of this article when referring to the “thing” or entity in HPL’s tale “The Colour Out of Space,” we will be referring to it as the Colour. In contrast when generally discussing color as a small portion of the electromagnetic spectrum, we will refer to it as color.

In previous articles we discussed the analyses professors from Miskatonic University performed on the meteorite samples collected from Nahum Gardner’s farm. After the sample dissipated the professors went back to the farm to collect a second sample. The meteorite continued to shrink and cool and they used a hammer and chisel to collect a second sample, gouging deeper into the meteorite. This deep cut revealed a large colored globule embedded in the meteorite. The glossy globule had the same strange color spectrum that the meteorite sample emitted in the lab (see below). Tapping it indicated that it was hollow and a sharp blow made it “burst with a nervous little pop.” Nothing was visually emitted and with the pop the globule disappeared. The professors thought there would be more of these globules in the meteorite but no others were found. Thus, the globule emitted a strange color just was the meteorite sample did when viewed with a spectroscope. However, what exactly is color and what is a spectroscope?

04_LC

Professors from Miskatonic University using a Spectroscope to analysis a sample of the meteorite (from Geek Dad Review – http://www.archive.wired.com)

Simply put, color is a physical property of an object that produced varying sensations on the human eye as the result of the way the object reflects, absorbs and/or emits light. Visible light is part of the electromagnetic radiation (EM) spectrum. Electromagnetism itself is a form of radiant energy released under certain electromagnetic processes and the EM spectrum is a means of categorizing EM radiation by the wavelength of the energy, from the long wavelengths of the radio waves all the way to the short wavelength, high energy gamma rays. Turns out visible light and its associated colors are just a tiny sliver of the EM spectrum between ultra-violet and infra-red.

787px-EM_spectrum_svg_wiki

The electromagnetic spectrum, showing the visible color bands (www.wikipedia.org)

As previously mentioned HPL did have a continued interest in chemistry throughout his life although his favorite scientific discipline was astronomy. However, these two scientific disciplines did merge in the consideration of color and how it can be used in astronomy. For example HPL purchased a hand held spectroscope, an instrument which is used to split light into its varying wavelength. Apparently he did use this instrument to conduct chemical experiments. Essentially, the spectroscope takes visible light and separates it into its varying colors with violet having the shortest wavelength and red having the longest (www.wisegeek.org). While a prism acts as a spectroscope, the spectroscope itself can be refined to include narrow, parallel sits, which allows for the different wavelengths of light to spread out so the wavelength of light can actually be measured (www.wisegeek.org).

130651495934www.antiquesnavigator.com

Shown above is a vintage Winkel-Zeiss portable hand held spectroscope, including a carrying case.   Is this what H.P. Lovecraft’s spectroscope looked like?  (www.antiquesnavigator.com)

In chemistry spectroscopes are used to identify specific chemical elements in a sample. Essentially, the material is heated under a flame and the resulting glowing gas produces an emission line spectrum that can be documented on a glass plate. Since each element generates its own specific emission line spectrum, the resulting color bands can be used to identify the elements in the unknown sample. This methodology was key in the discovery of many of the elements shown on the periodic table (www.wisegeek.org).

Silicon_Spectra

Specific emission line spectrum for silicon (www.wikipedia.org)

So if we can use the light emitted in the burning of a substance to identify its elemental components, maybe the same can be done with light from the stars. In the 1860’s William and Margaret Huggins used spectroscopy to determine that the stars are composed of the same elements found on Earth. Further spectroscopic studies on the stars indicated that some of the most prominent lines were associated with elements such as calcium and iron. Thus, it was concluded that these elements form the majority of the matter in stars. However a graduate student at Harvard, Cecilia Payne, conducted work that resulted in different conclusions.

With an understanding of quantum physics and that ions are generated in the high temperatures of stars, Payne’s re-calculated the amounts of the varying elements identified in stars and determined that they were composed primarily of hydrogen and helium. The remaining, heavier elements account for less than 2% of the mass of the stars. This work was part of her Ph.D. thesis in 1925 and was at first thought to be in error by many in the astronomical community, a community almost exclusively dominated by men. Later she converted her thesis into a book providing the evidence for her hypothesis, which was well-received by astronomers. Thus, by the 1930’s her thesis was supported by the astronomical community (Cosmic Horizons: Astronomy at the Cutting Edge, edited by Steven Soter and Neil deGrasse Tyson, 2000; also see the DVD or Blu-Ray of Cosmos, hosted by Neil DeGrasse Tyson, 2014).

mostelusivewomen
Cecilia Payne-Gaposchkin (www.worldsciencefestival.com)

The innovative work of Payne occurred over the mid-1920’s and her hypothesis that stars are composed primarily of hydrogen and helium was generally accepted by the mid-1930’s. Did HPL know about this? Was he familiar with Payne’s work at Harvard and did he use these ideas of analyzing the light of stars? “The Colour Out of Space” was written in March of 1927 so it is possible he was familiar with Payne’s work. If not, he was surely familiar with the work of the Huggins in the use of spectroscopy and star light. While I cannot find any evidence to support this, articles on such work may have stimulated HPL’s imagination and the development of “The Colour Out of Space.”

Next time we will continue with analysis of the color in the “The Colour Out of Space” and focus on how humans could perceive an unknown color. Thank you – Fred.

Colour_Out_of_Space_by_TALONABRAXAS
The Colour Out of Space by Talon Abraxas (www.deviantart.com)

Advertisements

One thought on “The Use of Color in The Colour Out of Space, Part 1

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s